$n$-Stabilizing Bisets

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stabilizing bisets

Let G be a finite group and let R be a commutative ring. We analyse the (G,G)-bisets which stabilize an indecomposable RG-module. We prove that the minimal ones are unique up to equivalence. This result has the same flavor as the uniqueness of vertices and sources up to conjugation and resembles also the theory of cuspidal characters in the context of Harish-Chandra induction for reductive grou...

متن کامل

2 3 Ja n 20 10 MACKEY FUNCTORS AND BISETS

For any finite groupG, we define a bivariant functor from the Dress category of finite G-sets to the conjugation biset category, whose objects are subgroups of G, and whose morphisms are generated by certain bifree bisets. Any additive functor from the conjugation biset category to abelian groups yields a Mackey functor by composition. We characterize the Mackey functors which arise in this way.

متن کامل

Mackey Functors and Bisets

For any finite group G, we define a bifunctor from the Dress category of finite G-sets to the conjugation biset category, whose objects are subgroups of G, and whose morphisms are generated by certain bifree bisets. Any additive functor from the conjugation biset category to abelian groups yields a Mackey functor by composition. We characterize the Mackey functors which arise in this way.

متن کامل

N-cadherin: stabilizing synapses

Spines are sites of excitatory synapse formation in central neurons. Alterations in spine structure and function are widely believed to actively contribute to the cellular mechanisms of learning and memory. In this issue, Mendez et al. (2010. J. Cell Biol. doi:10.1083/jcb.201003007) demonstrate a pivotal role for the cell adhesion molecule N-cadherin in activity-mediated spine stabilization, of...

متن کامل

00 9 Mackey Functors and Bisets

For any finite group G, we define a bifunctor from the Dress category of finite G-sets to the conjugation biset category, whose objects are subgroups of G, and whose morphisms are generated by certain bifree bisets. Any additive functor from the conjugation biset category to abelian groups yields a Mackey functor by composition. We characterize the Mackey functors which arise in this way.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics Research

سال: 2014

ISSN: 1916-9809,1916-9795

DOI: 10.5539/jmr.v6n3p123